• Triangle rectangle

$$a^2 = b^2 + c^2$$

$$\cos \widehat{C}$$
: $\frac{\text{côté adjacent}}{\text{hypoténuse}} = \frac{b}{a}$

$$\sin \widehat{C} : \frac{\text{côté opposé}}{\text{hypoténuse}} = \frac{c}{a}$$

$$\tan \widehat{C} : \frac{\widehat{\text{côté opposé}}}{\widehat{\text{côté adjacent}}} = \frac{c}{b} A$$

Aire :
$$\mathcal{A} = \frac{1}{2}bc$$

• Triangle quelconque

$$\widehat{A} + \widehat{B} + \widehat{C} = 180^{\circ}$$

Aire :
$$\mathcal{A} = \frac{1}{2}BC \times AH$$

● Cercle-Disque

Périmètre du cercle :
$$\ell = 2\pi R$$

Aire du disque : $\mathcal{A} = \pi R^2$

Arc de cercle - Secteur circulaire

Longueur de l'arc \widehat{AB} : $\ell = \alpha R$

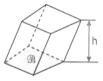
Aire du secteur circulaire :
$$\mathcal{A} = \frac{1}{2}\alpha R^2$$

Prisme

Volume :
$$V = \mathcal{B} \times h$$

 \mathcal{B} : aire de la base

h: hauteur



• Cylindre à base circulaire

Volume : $V = \pi R^2 h$

R : rayon de la base

h : hauteur

Pyramide

Volume :
$$V = \frac{1}{3} \Re \times h$$

B: aire de la base

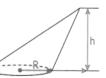
h: hauteur

• Cône à base circulaire

Volume : $V = \frac{1}{3}\pi R^2 h$

R : rayon de la base

h : hauteur

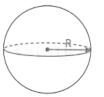


● Sphère - Boule

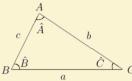
Aire de la sphère : $\mathcal{A} = 4\pi R^2$

Volume de la boule : $V = \frac{4}{3}\pi R^3$

R : rayon



Triangle



Dans un triangle quelconque ABC, on a les relations suivantes :

Aire du triangle :

$$\boxed{S = \frac{1}{2} \ a \times b \times \sin \hat{C} = \frac{1}{2} \ b \times c \times \sin \hat{A} = \frac{1}{2} \ a \times c \times \sin \hat{B}}$$

Formule des trois sinus :

$$\frac{a}{\sin \hat{A}} = \frac{b}{\sin \hat{B}} = \frac{c}{\sin \hat{C}}$$

Formule d'Al Kashi (Pythagore généralisée) :

$$a^2 = b^2 + c^2 - 2b.c.\cos \hat{A}$$

Proportionnalité dans le triangle. Théorème de Thalès

Soit un triangle ABC. M un point de (AB) et N un point de (AC) distincts de A.

• Si (BC) et (MN) sont parallèles, alors AMN et ABC ont leurs côtés proportionnels :

$$\frac{AM}{AB} = \frac{AN}{AC} = \frac{MN}{BC}$$

